Detecting upwelling events I

In this lesson we are going to see how to detect upwelling evens based on the difference in temperature between coastal zones and offshore. The basic idea is detect where those differences are lager than a certain threshold value.

Load the SST stack containing the the WEEKLY SST averages. In this example we will be using the **A2019_SST_WEEK_noite_filt_2k.nc** file. Digitize a line along the cost like one shown in fig above.

Copy the digitized line

Right-click on the line and select "copy"

While in copy mode move the line to a position offshore of about 300 or more km. Right-click to finish copy. Save both lines, the coast and the offshore one

The interpolated result

1	# Inter	polated file	$: C: \V DRCS A$	2019 SST WE	-K noite filt 2k	.nc
2	# -9.	04469(X) -8.	98135(X) -8.9	93639(X) -8.9	92319(X) -8.8703	5(X) -8.8597
	# 37.	0232(Ý) 37.:	146(Y) 37.2	2527(Ý) 37.3	3462(Ý) 37.422()	Y) 37.5356
	>XY					
	5.00	16.365623	15.955924	NaN 15.77667	78 15.417747	15.372477
	13.00	16.654665	15.787913	NaN 15.49075	51 15.296143	15.183819
	21.00	15.627963	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN NaN	14.624166
	29.00	14.824583	14.604536	NaN 14.65243	39 14.631835	14.572242
	37.00	14.389883	14.226919	NaN 14.05844	14 14.036526	14.116480
10	45.00	14.898088	14.533028	14.369971	14.220523 14.	117947 14
11	53.00	14.774886	14.706353	NaN 14.62369	93 14.603351	14.294975
12	61.00	15.568880	15.307452	NaN 15.36324	41 15.071890	15.614549
13	69.00	15.522415	15.317634	NaN 15.43879	95 15.334380	15.326274
14	77.00	14.936990	14.756957	14.713644	14.807681 14.	59 11 96 14.
15	85.00	14.844799	14.805100	NaN 14.50907	77 14.401623	14.359993
16	93.00	15.721930	NaN NaN NaN	15.341775	15.474850 15.	316276 15.
17	101.00	NaN NaN 15.0	018643 14.8	356486 14.9	952996 14.9973	11 15.027
18	109.00	15.165148	15.069942	15.304114	15.196501 15.	010159 14.

The interpolation result looks like this. The lines with # contain the coordinates of each vertex (points) and then we have as many columns as points in the line, plus de first column that holds the time in the form of day of the year.

Next we will interpolate all the 46 layers (weeks) on the points (vertex) of these two lines. Do as in figure above and save the result. Name the file as *west_coast_interp.dat* and open it in a text editor to look at its contents.

As said above, do this interpolation for both of the shore and offshore lines.

WARNING: DO NOT SAVE INTO FOLDERS THAT HAVE SPACES IN THE NAME

an a command window						
🖅 Run	×					
	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.					
Open:	<mark>cmd</mark> ~					
	OK Cancel Browse					

To open a command window, do for example, press both keyboard keys. The *Windows* and the R keys. Type cmd and *OK*

Change directory to where you have saved the lines and the interpolation result and run a command similar to the above. I am saying similar because your directory (folder) will not have the same name and the file names may be different. The point here is to understand that we are subtracting the SST from offshore from those at shore. When that difference, at each point, is larger than, say 2.5 degrees, we will consider it an indication that an upwelling event occurred. But to analyze the *diff_west_SST.dat* data we will need to apply some pre-processing steps because it only contains the SST differences but lost the coordinates information. We will address that in another lesson.